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Abstract
Lie point group classification of a scalar stochastic differential equation
(SDE) with one-dimensional Brownian motion is presented. The admitted
symmetry group can be zero, one, two or three dimensional. If an equation
admits a three-dimensional symmetry group, it can be transformed into the
equation of Brownian motion by a change of variables with non-random time
transformation. Such equations can be integrated by quadratures. There are
described drift coefficients for which SDEs with constant diffusion coefficients
admit two- and three-dimensional symmetry groups.

PACS numbers: 02.20.Sv, 02.30.Hq, 02.50.Ey

1. Introduction

The Lie group theory of differential equations has been well understood [1–3]. It studies
transformations by taking solutions of differential equations into other solutions of the same
equations. This theory is a very general and useful tool for finding analytical solutions of large
classes of differential equations.

The application of the Lie group theory to stochastic differential equations (SDEs) is
much more recent. First, restricted cases of point transformations were considered [4–7].
Then, the theory for general point transformations was developed [8–12]. In the latter case,
the transformation of the Brownian motion needs to be more deeply specified.

In this paper we present the Lie group classification of a scalar stochastic ODE with one-
dimensional Brownian motion. The admitted symmetry group can be zero, one, two or three
dimensional. If an equation admits a three-dimensional symmetry group, it can be transformed
into the equation of Brownian motion by a point change of variables with non-random time
transformation. Therefore, for such equations one can write down closed-form solutions using
quadratures. The equations with two- and three-dimensional symmetry groups are considered
in greater detail. Taking a constant diffusion coefficient, we characterize the drift coefficients
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for which SDEs admit two- and three-dimensional symmetry groups. Transformations of
these invariant equations into the corresponding canonical forms are provided.

It should be noted that the paper deals with infinitesimal Lie group transformations which
preserve the form of SDEs. Reconstruction of finite transformations from infinitesimal ones
was discussed in [10, 12]. Generally, it is not guaranteed that the finite transformations, which
are recovered from infinitesimal transformations, transform solutions of SDEs into another
solutions.

2. Scalar SDEs and symmetries

Let us consider the Itô stochastic differential equation

dx = f (t, x) dt + g(t, x) dW(t), g(t, x) �≡ 0, (2.1)

where f (t, x) is a drift, g(t, x) is a diffusion and W(t) is a standard Wiener process [13, 14].
We will be interested in infinitesimal group transformations (near identity change of variables)

t̄ = t̄ (t, x, a) ≈ t + τ(t, x)a, x̄ = x̄(t, x, a) ≈ x + ξ(t, x)a, (2.2)

which leave equation (2.1) and the framework of Itô calculus invariant. Transformations (2.2)
can be represented by generating operators of the form

X = τ(t, x)
∂

∂t
+ ξ(t, x)

∂

∂x
. (2.3)

The determining equations for admitted symmetries are (see, for example, [9])

ξt + f ξx − ξfx − τft − f τt − f 2τx − 1
2fg2τxx + 1

2g2ξxx = 0, (2.4)

gξx − ξgx − τgt − g

2

(
τt + f τx +

1

2
g2τxx

)
= 0, (2.5)

gτx = 0. (2.6)

It is interesting to note that the determining equations are deterministic even though they
describe symmetries of a stochastic differential equation.

In the general case, when functions f (t, x) and g(t, x) are arbitrary, the determining
equations (2.4)–(2.6) have no non-trivial solutions, i.e. there are no symmetries.

The last determining equation (2.6) can be solved as

τ = τ(t). (2.7)

Therefore, the symmetries admitted by equation (2.1) are fiber-preserving symmetries

X = τ(t)
∂

∂t
+ ξ(t, x)

∂

∂x
(2.8)

that substantially simplifies further consideration. In particular, we are restricted to the
equivalence transformations

t̄ = t̄ (t), x̄ = x̄(t, x), t̄t �= 0, x̄x �= 0, (2.9)

where change of time is not random. According to the general result concerning with the
random time change in Brownian motion [14], the Brownian motion is transformed as

dW̄ (t̄) =
√

dt̄ (t)

dt
dW(t). (2.10)

2
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Remark 2.1. Because of (2.7) the symmetries admitted by equation (2.1) form a Lie
algebra. It was noted in [9] (see also [8]) that in general symmetries of Itô systems do
not form Lie algebras while symmetries of Stratonovich systems always do. In a particular
case τ = τ(t) the determining equations for corresponding Itô and Stratonovich systems are
identical. Therefore, all results of this paper established for Itô SDE (2.1) are also valid for
the corresponding Stratonovich SDE:

dx = h(t, x) dt + g(t, x) ◦ dW(t), h = f − 1
2ggx. (2.11)

Let us illustrate symmetry properties by an example.

Example 2.1. The equation

dx = f (t) dt + g(t) dW(t) g(t) > 0 (2.12)

can be solved as

x(t) = x(t0) +
∫ t

t0

f (s) ds +
∫ t

t0

g(s) dW(s). (2.13)

Scalar stochastic differential equations which can be transformed by a non-degenerate change
of variables into this equation can be easily integrated by quadratures, i.e. they have closed-
form solutions. A wider family of stochastic differential equations can be integrated if we
consider representations of SDEs by decoupled systems [15, 16]. Since this integration
method goes beyond transformations (2.9), it will not be considered in this paper. It is worth
mentioning that besides quadratures there are other means to present closed-form solutions of
stochastic differential equations [17].

Equation (2.12) admits symmetries (cf [12])

X1 = 1

g2

∂

∂t
+

f

g2

∂

∂x
, X2 = ∂

∂x
,

X3 =
(

2

g2

∫
g2 dt

)
∂

∂t
+

(
x +

2f

g2

∫
g2 dt −

∫
f dt

)
∂

∂x

with the Lie algebra structure

[X1, X2] = 0, [X1, X3] = 2X1, [X2, X3] = X2.

Under the change of variables

t̄ =
∫

g2(t) dt, x̄ = x −
∫

f (t) dt (2.14)

equation (2.12) is transformed into the equation of Brownian motion:

dx̄ = dW̄ (t̄), (2.15)

which admits the symmetries

X̄1 = ∂

∂t̄
, X̄2 = ∂

∂x̄
, X̄3 = 2t̄

∂

∂ t̄
+ x̄

∂

∂x̄
.

Solution (2.13) of the original equation can be obtained from the solution

x̄(t̄) = x̄(t̄0) + W̄ (t̄) − W̄ (t̄0) (2.16)

of the Brownian motion equation by change of variables (2.14).
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3. Group classification

Similarly to the treatment of the one-dimensional Fokker–Planck (FP) equation, corresponding
to SDE (2.1), in [18] it is useful to prove the following result.

Theorem 3.1. If equation (2.1) admits a symmetry operator (2.8), then there exists a change
of variables

t̄ = t̄ (t), x̄ = x̄(t, x)

which transforms the equation into the form

dx̄ = f̄ (x̄) dt̄ + ḡ(x̄) dW̄ (t̄), g(x̄) �≡ 0. (3.1)

Proof. There will be considered two cases: τ(t) �≡ 0 and τ(t) ≡ 0.

(1) τ(t) �≡ 0.
Let τ(t) �≡ 0 and ξ(t, x) be solutions of the determining equations (2.4)–(2.6). We
consider the change of variables

t̄ = t̄ (t) =
∫

dt

τ (t)
, x̄ = x̄(t, x), x̄x �= 0,

where x̄(t, x) is a solution of the differential equation:

τ(t)x̄t + ξ(t, x)x̄x = 0. (3.2)

In the new variables t̄ and x̄ the symmetry operator takes the form

X̄ = ∂

∂t̄
.

By the rules of Itô calculus

dx̄ = (
x̄t + x̄xf + 1

2 x̄xxg
2
)

dt + x̄xg dW(t).

Changing differentials (see (2.10)), we obtain the transformed equation

dx̄ = f̄ (t̄ , x̄) dt̄ + ḡ(t̄ , x̄) dW̄ (t̄) (3.3)

with the drift and diffusion coefficients

f̄ (t̄ , x̄) = (
x̄t + x̄xf + 1

2 x̄xxg
2
)
τ, ḡ(t̄ , x̄) = x̄xg

√
τ , (3.4)

which should be expressed in terms of the new variables t̄ and x̄. We assume that τ > 0
(one can always choose the symmetry so that τ(t) > 0 on some interval where τ �= 0).
Let us show that the transformed equation (3.3) with coefficients (3.4) has the form (3.1)
∂

∂t̄
f̄ (t̄ , x̄) =

(
τ(t)

∂

∂t
+ ξ(t, x)

∂

∂x

) [(
x̄t + x̄xf +

1

2
x̄xxg

2

)
τ

]

= τ (τ x̄t + ξ x̄x)t + f τ (τ x̄t + ξ x̄x)x +
g2

2
τ (τ x̄t + ξ x̄x)xx

− x̄xτ

(
ξt + f ξx − ξfx − τft − f τt +

1

2
g2ξxx

)

− x̄xxτg

(
gξx − ξgx − τgt − g

2
τt

)
= 0

and
∂

∂t̄
ḡ(t̄ , x̄) =

(
τ(t)

∂

∂t
+ ξ(t, x)

∂

∂x

)
[x̄xg

√
τ ]

= g
√

τ(τ x̄t + ξ x̄x)x − x̄x

√
τ

(
gξx − ξgx − τgt − g

2
τt

)
= 0.

For the last equalities we used equation (3.2) and determining equations (2.4), (2.5).

4



J. Phys. A: Math. Theor. 43 (2010) 055202 R Kozlov

(2) τ(t) ≡ 0.
If τ(t) ≡ 0 and ξ(t, x) �≡ 0, we can choose change of variables

t̄ = t, x̄ =
∫

dx

ξ(t, x)

to bring the equation (2.1) to the form (3.3) with

f̄ (t̄ , x̄) = −
∫

ξt

ξ 2
dx +

f

ξ
− g2

2

ξx

ξ 2
, ḡ(t̄ , x̄) = g

ξ
, (3.5)

where the drift and diffusion should be expressed in terms of the new variables.
Using

∂

∂x̄
f̄ (t̄ , x̄) =

(
ξ(t, x)

∂

∂x

) [
−

∫
ξt

ξ 2
dx +

f

ξ
− g2

2

ξx

ξ 2

]

= −1

ξ

(
ξt + f ξx − ξfx +

1

2
g2ξxx

)
− gξx

ξ 2
(ξgx − gξx) = 0

and

∂

∂x̄
ḡ(t̄ , x̄) =

(
ξ(t, x)

∂

∂x

)[
g

ξ

]
= 1

ξ
(ξgx − gξx) = 0,

where the last identities follow from the determining equations for the coefficients of the
symmetry, we conclude that the transformed equation has the form

dx̄ = f̄ (t̄) dt̄ + ḡ(t̄) dW̄ (t̄). (3.6)

This equation was considered in example 2.1, where we showed that it can be transformed
into the equation of Brownian motion, i.e. an equation with time-independent coefficients.

�

Theorem 3.1 allows us to restrict further consideration to the stochastic differential
equation

dx = f (x) dt + g(x) dW(t), g(x) �≡ 0. (3.7)

By change of variables

x →
∫

dx

g(x)
,

this equation can be simplified further. We obtain an equation of the form

dx = f (x) dt + dW(t), (3.8)

for which group classification can be easily performed. From the determining
equations (2.4)–(2.6) we get

τ(t), ξ(t, x) = τ ′(t)
2

x + A(t), (3.9)

(
τ ′(t)

2
x + A(t)

)
f ′(x) +

τ ′(t)
2

f (x) = τ ′′(t)
2

x + A′(t), (3.10)

where A(t) is an arbitrary function. Differentiating (3.10) twice with respect to x, we obtain

τ ′(t)
2

(xf ′′′(x) + 3f ′′(x)) + A(t)f ′′′(x) = 0. (3.11)

5
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Symmetries different from time translation (τ ′(t) �≡ 0 or A(t) �≡ 0) can exist if

f ′′′(x) = 0 or f ′′(x) = C1

(x + C2)3
,

where C1 and C2 are arbitrary constants. Direct consideration of all possible subcases, which
can lead to non-trivial solutions for τ(t) and A(t), provides us with the following Lie group
classification.

(1) Arbitrary f (x)

X1 = ∂

∂t
.

(2) f (x) = α

x + γ
+ β(x + γ ), α �= 0

(a) β �= 0

X1 = ∂

∂t
, X2 = e2βt ∂

∂t
+ β(x + γ ) e2βt ∂

∂x
;

(b) β = 0

X1 = ∂

∂t
, X2 = 2t

∂

∂t
+ (x + γ )

∂

∂x
.

(3) f (x) = αx + β

(a) α �= 0

X1 = ∂

∂t
, X2 = e2αt ∂

∂t
+ (αx + β) e2αt ∂

∂x
, X3 = eαt ∂

∂x
;

(b) α = 0

X1 = ∂

∂t
, X2 = 2t

∂

∂t
+ (x + βt)

∂

∂x
, X3 = ∂

∂x
.

Here α, β and γ are constants. The equations of subcases 2a and 2b can be transformed to the
equation

dx̄ = α

x̄
dt̄ + dW̄ (t̄)

by change of variables

t̄ = t0 − e−2βt

2β
, x̄ = e−βt (x + γ )

and

t̄ = t, x̄ = x + γ,

respectively. Therefore, they represent the same equivalence class. Similarly, the equations of
subcases 3a and 3b can be transformed to the equation of Brownian motion (2.15) by change
of variables

t̄ = t0 − e−2αt

2α
, x̄ = e−αt

(
x +

β

α

)

and

t̄ = t, x̄ = x − βt.

Finally, the group classification of scalar SDE (2.1) with respect to equivalence transformations
(2.9) is presented in table 1.

The results can be summed up as a theorem.

6
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Table 1. Lie group classification of a scalar stochastic differential equation.

Group dimension Basis operators Equation

0 No symmetries dx = f (t, x) dt + dW(t)

1 X1 = ∂

∂t
dx = f (x) dt + dW(t)

2 X1 = ∂

∂t
, X2 = 2t

∂

∂t
+ x

∂

∂x
dx = α

x
dt + dW(t), α �= 0

3 X1 = ∂

∂t
, X2 = 2t

∂

∂t
+ x

∂

∂x
, X3 = ∂

∂x
dx = dW(t)

Theorem 3.2. The dimension of the Lie algebra of symmetries admitted by equation (2.1)
can be equal to 0, 1, 2 or 3. If the equation admits a three-dimensional symmetry group, it
can be transformed into the equation of Brownian motion by change of variables (2.9).

Comparing the results of the group classification and the discussion concerning
integrability by quadratures (example 2.1), we can formulate a sufficient condition of
integrability by quadratures as follows.

Corollary 3.3. The stochastic differential equation (2.1) is integrable by quadratures if it
admits a three-dimensional symmetry group.

The structure of the Lie algebras present in the group classification allows us to state the
following result.

Theorem 3.4. The stochastic differential equation (2.1) admits a three-dimensional symmetry
group if and only if it admits a symmetry of the form

X∗ = ξ(t, x)
∂

∂x
. (3.12)

A SDE admits such symmetry if and only if functions f (t, x) and g(t, x) satisfy the condition(
gt

g
− g

(
f

g

)
x

+
1

2
ggxx

)
x

= 0. (3.13)

Proof. Taking into account how symmetries of the representative equations, given in table 1,
are transformed by changes of variables (2.9), we see that the equivalence class of the Brownian
motion equation can be characterized as SDEs admitting symmetry (3.12). Condition (3.13)
is obtained from the determining equations. �

For Stratonovich equation (2.11) condition (3.13) gets simplified as(
gt

g
− g

(
h

g

)
x

)
x

= 0. (3.14)

4. Criterion of invariance under two- and three-dimensional symmetry groups

In the previous section we provided Lie group classification of a scalar SDE. To obtain these
results existence of one admitted symmetry was assumed. This symmetry was used in the
simplifying transformation, which lead us to equation (3.7) used further for the simplification
and classification. It can be useful to have a criterion which does not assume any knowledge

7
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concerning the admitted symmetry group. Such criterion for invariance under two- and three-
dimensional symmetry groups will be established in this section.

It was stated in theorem 3.4 that if the stochastic equation (2.1) admits a symmetry (3.12),
then it admits a three-dimensional symmetry group. This observation can be used to establish
a criterion when the admitted symmetry group is two dimensional. Such groups consist of
two symmetry operators X1 and X2 which satisfy the condition τ(t) �≡ 0.

Let us establish when the stochastic differential equation

dx = f (t, x) dt + dW(t) (4.1)

admits two- and three-dimensional symmetry groups. This consideration is similar to the
treatment of one-dimensional Fokker–Planck equation in [18]. It should be noted that any
diffusion process can be reduced to a process governed by equation (4.1) with the help of a
random replacement of time [19].

The determining equations (2.4)–(2.6) for equation (4.1) lead to

τ(t), ξ(t, x) = τ ′(t)
2

x + A(t), (4.2)

τ(t)ft +

(
τ ′(t)

2
x + A(t)

)
fx +

τ ′(t)
2

f = τ ′′(t)
2

x + A′(t), (4.3)

where A(t) is an arbitrary function. It is clearly seen that the admitted group can be at most
three dimensional.

Let us find functions f (t, x) for which there exist two linearly independent solutions τ1(t)

and τ2(t). Differentiating (4.3) twice with respect to x, we get

τ(t)ftxx +

(
τ ′(t)

2
x + A(t)

)
fxxx +

3

2
τ ′(t)fxx = 0. (4.4)

If we assume that fxxx = 0, then fxx = h(t) and equation (4.4) takes the form

τ(t)h′(t) + 3
2τ ′(t)h(t) = 0. (4.5)

If h(t) �≡ 0, there is only one linearly independent solution τ(t). For h(t) ≡ 0 equation (4.5)
is identically satisfied so that the case fxx = 0 requires a separate treatment.

We proceed with fxxx �= 0. Rearranging (4.4), we get

A(t) = −τ(t)
ftxx

fxxx

− τ ′(t)
2

xfxxx + 3fxx

fxxx

,

which leads to

τ(t)

(
ftxx

fxxx

)
x

+
τ ′(t)

2

(
xfxxx + 3fxx

fxxx

)
x

= 0.

If there exist two linearly independent solutions τ1(t) and τ2(t), then(
ftxx

fxxx

)
x

= 0 and

(
xfxxx + 3fxx

fxxx

)
x

= 0.

From these condition we obtain

f (t, x) = C

x + H(t)
+ F(t)x + G(t),

where F(t), G(t) and H(t) are arbitrary functions and C �= 0 is a constant.
We continue with an arbitrary constant C (C = 0 is included to incorporate the case

fxx = 0). Substitution into equation (4.4) gives

C(2A − τ ′H + 2τH ′) = 0

that leads to two cases.

8
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(1) C = 0.
For f (t, x) = F(t)x + G(t) the system of determining equations (4.2) and (4.3) has
three linearly independent solutions (τ (t), A(t)). We conclude that there exists a three-
dimensional symmetry group admitted by the SDE.

(2) C �= 0 and A = τ ′
2 H − τH ′.

Substitution into equations (4.2) and (4.3) gives the system

τ ′′

2
= τ ′F + τF ′,

τ ′

2
(H ′ − HF + G) + τ(H ′ − HF + G)′ = 0.

For the existence of two linearly independent solutions τ1(t) and τ2(t) we need the
condition

G = −H ′ + HF

to hold.

We summarize the results as the following theorem.

Theorem 4.1. The stochastic differential equation (4.1) admits a two-dimensional symmetry
group if and only if

f (t, x) = C

x + H(t)
+ F(t)(x + H(t)) − H ′(t), C �= 0 (4.6)

and a three-dimensional symmetry group if and only if

f (t, x) = F(t)x + G(t). (4.7)

Here F(t), G(t) and H(t) are arbitrary functions and C is a constant.

The original SDE (2.1) can be transformed into an equation of the form (4.1) by the
change of variables:

y =
∫

dx

g(t, x)
. (4.8)

We obtain the equation

dy =
(

−
∫

gt

g2
dx +

f

g
− gx

2

)
dt + dW(t).

Applying condition (4.7) to the transformed equation, we get

−
∫

gt

g2
dx +

f

g
− gx

2
= F(t)

∫
dx

g(t, x)
+ G(t).

Excluding the arbitrary functions by differentiation with respect to x, we conclude the following
result.

Corollary 4.2. The stochastic differential equation (2.1) admits a three-dimensional symmetry
group if and only if its drift and diffusion coefficient satisfy equation (3.13).

This condition was already obtained in theorem 3.4 by other reasoning.

Remark 4.3. Group classification of one-dimensional Fokker–Planck equation was given
in [18]. For the drifts (4.6) and (4.7) the corresponding FP equations admit four- and six-
dimensional symmetry groups, respectively. However, not all cases when FP equations admit
four- and six-dimensional symmetry groups are presented by (4.6) and (4.7).

9
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It is possible to provide a change of variables which transform stochastic differential
equation (4.1) for drift coefficients (4.6) and (4.7) to the canonical forms of SDEs admitting
two- and three-dimensional symmetry groups, presented in table 1. These transformations are

t̄ (t) =
∫

[e−2
∫

F(t) dt ] dt, x̄(t, x) = (x + H(t)) e− ∫
F(t) dt (4.9)

and

t̄ (t) =
∫

[e−2
∫

F(t) dt ] dt, x̄(t, x) = x e− ∫
F(t) dt −

∫
[e− ∫

F(t) dt ]G(t) dt, (4.10)

respectively.
In the rest of the section we will consider a number of examples.

Example 4.1. Interest rate models.
Let us consider the generalized one-factor interest rate model

dx = (α + βx) dt + σxγ dW(t), σ �= 0, (4.11)

where the parameters α, β, γ and σ are constants. It is reasonable to restrict ourselves to the
case x(t) > 0. The description of particular models of this form can be found in [20, 21].
Such models are widely used in financial mathematics. An empirical comparison of eight
short-term interest rate models of the form (4.11) was performed in [22].

The model equation (4.11) can be transformed into equation (4.1) by the change of
variables

y =
∫

dx

σxγ
=

⎧⎪⎪⎨
⎪⎪⎩

1

σ

x1−γ

1 − γ
, γ �= 1,

1

σ
ln x, γ = 1.

For these subcases the transformed equation takes the forms

dy =
(

ασ
1

γ−1 ((1 − γ )y)
γ

γ−1 + β(1 − γ )y +
γ

2(γ − 1)

1

y

)
dt + dW(t), γ �= 1

and

dy =
(

α

σ
e−σy +

(
β

σ
− σ

2

))
dt + dW(t), γ = 1.

Using theorem 4.1, we conclude the dimensionality of the admitted symmetry group
without the actual computation of the symmetry operators. The results are the following.

(1) Three-dimensional symmetry group

(a) γ = 0,
(b) γ = 1

2 and α = σ 2

4 ,
(c) γ = 1 and α = 0.

(2) Two-dimensional symmetry group

(a) γ �= {
0, 1

2 , 1
}

and α = 0,

(b) γ = 1
2 and α �= σ 2

4 .

(3) One-dimensional symmetry group
All other cases of the coefficients α, β and γ . (It is easy to see that for any values of the
coefficients equation (4.11) admits time translations.)

10
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Among the cases which are singled out one can see some popular models of interest rates.
Vasicek model [23]: γ = 0; its particular case—Merton’s model [24]: γ = β = 0; Cox–
Ingersoll–Ross model [25]: γ = 1

2 ; and Dothan’s model [26]: γ = 1 and α = 0.
Let us consider the equations admitting three-dimensional symmetry groups in greater

detail. For γ = 0, equation (4.11) takes the form

dx = (α + βx) dt + σ dW(t). (4.12)

It admits the following symmetry groups depending on the value of parameter β.

(1) β �= 0

X1 = ∂

∂t
, X2 = e2βt ∂

∂t
+ (α + βx) e2βt ∂

∂x
, X3 = eβt ∂

∂x
;

(2) β = 0

X1 = ∂

∂t
, X2 = 2t

∂

∂t
+ (x + αt)

∂

∂x
, X3 = ∂

∂x
.

By change of variables

y = e−βtx

equation (4.12) is transformed into the equation

dy = α e−βt dt + σ e−βt dW(t), (4.13)

which can be easily integrated. For the original equation we get the solution

x(t) = eβ(t−t0)x(t0) +
α

β
(eβ(t−t0) − 1) + σ

∫ t

t0

eβ(t−s) dW(s), β �= 0

and

x(t) = x(t0) + α(t − t0) + σ(W(t) − W(t0)), β = 0.

For the case γ = 1
2 and α = σ 2

4 we get the equation

dx =
(

σ 2

4
+ βx

)
dt + σ

√
x dW(t), (4.14)

which admits the following symmetries.

(1) β �= 0

X1 = ∂

∂t
, X2 = eβt ∂

∂t
+ βx eβt ∂

∂x
, X3 = √

x eβt/2 ∂

∂x
;

(2) β = 0

X1 = ∂

∂t
, X2 = t

∂

∂t
+ x

∂

∂x
, X3 = √

x
∂

∂x
.

The change of variables

y = e−βt/2√x

brings equation (4.14) into the form

dy = σ

2
e−βt/2 dW(t). (4.15)

One can easily integrate it and find the solution of the original problem as

x(t) = eβ(t−t0)

(√
x(t0) +

σ

2

∫ t

t0

eβ(t0−s)/2 dW(s)

)2

.

11
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In the last case with γ = 1 and α = 0 we obtain the equation

dx = βx dt + σx dW(t), (4.16)

which is well-known as the equation of geometric Brownian motion. It admits symmetries

X1 = ∂

∂t
, X2 = x

∂

∂x
, X3 = 2t

∂

∂t
+

(
ln x +

(
β − σ 2

2

)
t

)
x

∂

∂x
.

The change of variables

y = ln x

transforms this equation into

dy =
(

β − σ 2

2

)
dt + σ dW(t). (4.17)

By integration we find the solution of the original equation as

x(t) = x(t0) exp

((
β − σ 2

2

)
(t − t0) + σ(W(t) − W(t0))

)
.

Of course, equations (4.13), (4.15) and (4.17) can be transformed to the equation of Brownian
motion by the change of variables (2.14).

It is interesting to note that there are the same cases with two- and three-dimensional
symmetry groups if we consider equation

dx = (α(t) + β(t)x) dt + σ(t)xγ dW(t), σ (t) �≡ 0 (4.18)

instead of (4.11). Here α �= σ 2

4 should be understood as α(t) = ρσ 2(t), where ρ �= 1
4 is a

constant. The cases with one-dimensional symmetry group cannot be characterized with the
help of theorem 4.1. Generally, there is one admitted symmetry for other values of functions
α(t), β(t) and σ(t) which satisfy additional conditions. These conditions can be obtained
from the determining equations. There are cases when equation (4.18) has no symmetries.

Example 4.2. A Brownian bridge [27] from α to β is a process governed by the equation

dx = β − x

T − t
dt + dW(t), 0 < t < T . (4.19)

For any initial value x(0) = α the process has the final value x(T ) = β. By change of
variables (4.10), namely

t̄ = 1

T − t
, x̄ = x − β

T − t
,

equation (4.19) is transformed into the equation of Brownian motion. Taking the solution
of the Brownian motion equation and applying the inverse change of variables, one gets the
solution of (4.19) as

x(t) = α

(
1 − t

T

)
+ β

t

T
+ (T − t)

∫ t

0

1

T − s
dW(s).
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